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ABSTFUCT 

The absorption spectrum near the band edge of 

amorphous selenium was measured at temperatures between 

29S0K and 20°K on evaporated samples with and without 

substrates. A large difference between the two types 

of samples was noted especially at low temperatures. 

Structure in the absorption spectrum of unsupported 

samples similar to that observed in other semiconductors 

was analyzed and it is suggested that this structure is 

caused by indirect transitions between the valence band 

and the conduction band and by the formation of indirect 

excitons. The energy of the phonon assisting in the 

indirect transitions was found to be 0.023 eV. The 

binding energy of the exciton was 0.076 eV, and the 

energy of the indirect band gap was 1.717 eV at room 

temperature, increasing nearly with temperature by 

7.4  x l o m 4  eV/OK over a wide range of temperatures. 

These results are compared with other experimental 

observations for both hexagonal and amorphous selenium 

and with recent energy band calculations. The results 

are explained in terms of a band model for amorphous 

selenium which has band minima on the hexagonal plane 

perpendicular to the direction of the c-axis in the 

first Brillouin zone of hexagonal selenium. The band 

scheme is justified by the existence of short range order 

which exists in small regions of the amorphous material. 
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CHAPTER I 
~ 

INTRODUCTION 

In the past ten years experimental and theoretical 

advances in the study of the optical absorption spectra 

of semiconductors have contributed greatly to the under- 

standing of these materials. The onset of strong optical 

absorption near the visible portion of the spectrum is 

known to be associated with the excitation of electrons 

from the valence band, across the forbidden gap, to the 

conduction band, or with the formation of excitons. In 

most semiconductors, the absorption coefficient rises 

several orders of magnitude in only a fraction of an 

electron volt. Location of this absorption edge then 

gives a rough measure of the band gap of the material. 

The electrical properties of semiconductors are in- 

fluenced strongly by the electronic states just above 

and below the band gap. It is, in theory, possible to 

determine theae states from optical measurements. 

Therefore, careful measurement and analysis of the 

optical absorption edge is an important element in the 

study of the properties of a semiconductor. 

Although the edge has been located for many semi- 

conductors, careful analysis of the edge has been made 

for only a few. Probably the best-known and most 

1 
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ex tens ive  work has  been c a r r i e d  out on germanium and 

I n  these  ma te r i a l s  a d e t a i l e d  knowledge of 

t he  band s t r u c t u r e  has been gained f r o m  t h e  o p t i c a l  

absorp t ion  measurements, t oge the r  w i th  o the r  experiments 

such as cyc lo t ron  resonance 5 , galvano-magnetic e f f e c t s ,  

6 and magneto absorp t ion  t o  name a few The end r e s u l t  

i s  t h a t  t h e  energy band s t r u c t u r e s  f o r  these  m a t e r i a l s  

a r e  now known t o  a high degree of p r e c i s i o n  and c e r t a i n t y .  

A l l  o f  t h e  m a t e r i a l s  f o r  which d e t a i l e d  measurement 

and a n a l y s i s  of t he  o p t i c a l  absorp t ion  edge have been 

made have been n e a r l y  p e r f e c t  c r y s t a l s ,  p a r t l y  because 

a p r e c i s e  band s t r u c t u r e  w i t h  s p e c i f i c  symmetry i s  def ined  

only f o r  such an o r d e r l y  a r r ay  of atoms. 

t he  o p t i c a l  absorp t ion  edge o f  amorphous selenium i s  

examined. 

coo l ing  f r o m  t h e  molten phase o r  by vacuum evaporat ion.  

Laue x-ray d i f f r a c t i o n  p a t t e r n s  show no apparent  order ,  

bu t  s t u d i e s  us ing  o t h e r  x-ray techniques show t h a t  con- 
7 s i d e r a b l e  order  e x i s t s  over reg ions  about 10A i n  s i z e  

I n  t h i s  work, 

This m a t e r i a l  can be prepared e i t h e r  by r a p i d  

0 

The s t r u c t u r e  i s  s i m i l a r  t o  hexagonal selenium which con- 

s i s t s  of s p i r a l  cha ins  having t h r e e  atoms p e r  t u r n .  The 

equ iva len t  atoms on adjacent  cha ins  form a hexagonal n e t -  

work. The n e a r e s t  neighbor l i e s  along the  cha in  a t  a 

d i s t a n c e  of  2.32A and a bond angle  of 1O5.so, and the  
0 

second n e a r e s t  neighbors a re  l o c a t e d  on ad jacent  cha ins  
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0 
at a distance of 3.46A. 

of the hexagonal s t r u ~ t u r e ~ ~ ~ .  

distance in amorphous selenium is a l s o  2.324, but the 

Figure 1 is a schematic diagram 

The nearest neighbor 
0 

next nearest neighbor distance is increased to 3.808 7 . 
The purpose of this work was to measure and analyze 

the onset of absorption in amorphous selenium in a manner 

similar to that used for other crystalline semiconductors. 

Extensive optical measurements in the region of the ab- 

sorption edge have been made previously 

not been analyzed in such a manner. The existance of 

but have 

short-range order has prompted this author and others 17-23 

to interpret measurements in terms of the band theory. 

The theory of the optical absorption edge has been derived 

elsewhere f o r  several cases, and a review of this work is 

presented in Chapter 11. 

results from the absorption measurements the functional 

dependance of the absorption coefficient on both photon 

energy and temperature must be known accurately. 

experimental techniques used in obtaining this information 

in the region from 1.5 - 2.0 eV are presented in Chapter 
I11 together with sone new techniques used to prepare the 

samples. The results of the measurements are presented 

in Chapter IV, where it is suggested that the low values 

of the absorption coefficient are caused by indirect 

transitions to the conduction band and the exciton band. 

In order to get meaningful 

The 
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Fig. 1. The structure of hexagonal selenium 



The indirect band gap at room temperature is found to be 

1.717 - + 0.005 eV and the binding energy of the exciton is 

0.076 - + 0.01 eV. 
increasing temperature by 7.4 x eV/OK, over a large 

temperature range. The absorption spectrum which yielded 

these results was measured from 20°K to 29S0K on thin 

evaporated samples without substrates. The results are 

discussed in the light of recent band calculations in 

Chapter V. The most recent calculation would lead one 

to expect only direct transitionsso that a minimum in 

the conduction band is proposed in a different symmetry 

direction. There are many different experiments that 

could be done which would further demonstrate the exist- 

ence of an indirect band gap in amorphous selenium. Some 

of these are suggested in Chapter VI, as well as further 

measurements that could give a better understanding of 

this material. 

The indirect band gap decreases with 



CHAPTER I1 

THEORY OF THE OPTICAL ABSORPTION-EDGE SPECTRUM 
_.- 

1. In t roduc t ion  - 
I n  t h i s  chap te r  t h e  theory o f  t he  o p t i c a l  absorp t ion  

spectrum is reviewed. We s h a l l  be i n t e r e s t e d  i n  expres-  

s ions  f o r  t h e  abso rp t ion  c o e f f i c i e n t  f o r  t h e  cases  of  

d i r e c t  and i n d i r e c t  t r a n s i t i o n s  f o r  s i n g l e ,  non-degenerate 

bands. Only the  r e s u l t s  of the  c a l c u l a t i o n s  a r e  presented  

here ,  and the  r eade r  should r e f e r  t o  a review a r t i c l e  by 

T .  P. M ~ L e a n ~ ~  f o r  a f u l l  d i scuss ion .  

which fol low were taken  from th is  a r t i c l e  w i t h  only s l i g h t  

The express ions  

modi f ica t ions  i n  f o r m  and no ta t ion .  

2. D e f i n i t i o n s  - 
The o p t i c a l  abso rp t ion  c o e f f i c i e n t  i s  a p rope r ty  of  

t he  m a t e r i a l  and i s  def ined  a s  the  energy removed p e r  u n i t  

time and volume f r o m  a beam of u n i t  i n t e n s i t y .  Let ii’ be 

t h e  e l e c t r i c  f i e l d  vec to r  i n  a medium of r e f r a c t i v e  index 

II such that  the  energy d e n s i t y  i n  t h e  medium i s  n(F?h71‘ 

If W ( f )  i s  t h e  p r o b a b i l i t y  pe r  u n i t  time p e r  u n i t  volume 

t h a t  a photon of energy E=%O has been absorbed causing an 

e l e c t r o n i c  t r a n s i t i o n ,  then t h e  abso rp t ion  c o e f f i c i e n t  i s  

g iven  by 

b 
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I 

where C i s  the  v e l o c i t y  o f  l i g h t .  The problem i s  t o  

c a l c u l a t e  t h e  t r a n s i t i o n  p r o b a b i l i t y  W(E). This  i s  done 

fo rma l ly  us ing  t h e  semi -c l a s s i ca l  t heo ry  of r a d i a t i o n .  

The Hamiltonian f o r  t h e  system i n  i t s  s imples t  form 

c o n s i s t s  o f  t w o  p a r t s :  the atomic Hani l tonIan  and 

i n t e r a c t i o n  o r  r a d i a t i o n  Hamiltonian g iven  by 

t h e  

-2 1 

where A 

and t h e  summation runs over the  valence e l e c t r o n s ,  o r  more 

p r e c i s e l y  all of t h e  e l e c t r o n s  i n  t h e  c r y s t a l .  Terms a r e  

added t o  Eq. (2-2)  t o  t r e a t  t h e  more complex cases .  The 

i s  the v e c t o r  p o t e n t i a l  of the r a d i a t i o n  f i e l d ,  

p r o b a b i l i t y  that  a t r a n s i t i o n  has  occured i n  time t f r o m  

the ground s t a t e  10) t o  a s t a t e  Ik,,k,) descr ibed  by t h e  

wave vec to r s  k, and k, i n  the valence and conduct ion 

- 9 -  

-+ --* 

bands r e s p e c t i v e l y  i s  given by 

T h e  f a c t o r  of  2 accounts f o r  t h e  s p i n  s t a t e s  o f  t h e  

e l e c t r o n .  In  th i s  equat ion  v i s  t h e  volume o f  t h e  

c r y s t a l ,  and E(k;) i s  t h e  energy a s soc ia t ed  w i t h  an 

e l e c t r o n  i n  t h e  band i The 

summation should extend over all p o s s i b l e  s t a t e s  while  

the 

3 

w i t h  wave v e c t o r  2 ;  . 

s - func t ion  in su res  conserva t ion  o f  energy. 



Thus, t o  p r e d i c t  t h e  absorpt ion c o e f f i c i e n t ,  one must 

have accura te  knowledge of  the wave f u n c t i o n s  of t he  

e l e c t r o n s  and must a l s o  be able t o  perform t h e  summation 

over a l l  s t a t e s .  This  i s  gene ra l ly  a t a s k  t o o  formidable 

t o  be r e a l i s t i c  and impossible i n  t h e  case  o f  amorphous 

selenium where t h e  symmetry a s soc ia t ed  wi th  a p a r t i c u l a r  

atom can only be approximated. It i s  p o s s i b l e  t o  t r e a t  

s p e c i a l  cases  wi th  s impl i fy ing  assumptions t o  g e t  u s e f u l  

r e s u l t s  a s  i s  shown i n  t h e  next  two s e c t i o n s .  

3. D i r e c t  T r a n s i t i o n s  - 
The s imples t  case  t h a t  can be t r e a t e d  i s  for t h e  

e x c i t a t i o n  between two parabol ic  bands whose extrema l i e  

a t  t h e  same p o i n t  i n  1( -space. 
* 

If we assume t h a t  t he  

e l e c t r o n i c  s t a t e s  may be represented  by Bloch f u n c t i o n s ,  

and convert  t h e  summatlon i n  Eq. (2-3)  t o  an i n t e g r a t i o n  

i n  the  usua l  way, t h e  phase f a c t o r s  w i l l  y i e l d  a s - func t ion  

o f  t h e  form S(k,-kc-e) where 

photon. Since the  wave vec tor  f o r  photons of  energy 

+ -we 
i s  t h e  wave vec to r  o f  t he  

2 eV i s  very  small  i n  comparison t o  t h e  s i z e  o f  t he  

e l e c t r o n i c  wave v e c t o r s ,  i t  I s  assumed i n  t h i s  ca se  t h a t  

only v e r t i c a l  o r  d i r e c t  t r a n s i t i o n s  can occur a s  shown 

by t h e  heavy arrow i n  F ig .  2 (a ) .  I n  t h i s  case ,  the  

abso rp t ion  c o e f f i c i e n t  i s  given by 
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E 

\ T 

- )leke E, = E, (k,) + - 
2 m t  

TlON 

Fig. 2. Energy bands showing (a) direct and (blindirect transitions 
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where 

I (2-5) 
uni t  
c.l\ 

and f* i s  the  reduced e f f e c t i v e  mass given by 

The minimum energy sepa ra t ion  of t h e  bands a s  shown i n  

Fig.  2 ( a )  i s  denoted by E, . There a r e  s e v e r a l  cons t an t  

f a c t o r s  t h a t  appear i n  Eq. (2-4) which could be eva lua ted  

i f  t he  e l e c t r o n i c  wave func t ions  were known. But, t h e s e  

a r e  given throughout t h i s  chapter  by one symbol whose 

numerical  va lue  i s  unimportant t o  t h e  d i scuss ion .  These 

cons t an t  f a c t o r s  w i l l  i n  genera l  have d i f f e r e n t  va lues  

f o r  t h e  d i f f e r e n t  ca ses ,  but w i l l  no t  be given s e p a r a t e  

l a b e l s  here .  The f i r s t  term i n  t h e  mat r ix  element o f  Eq. 

(2-5) w i l l  e i t h e r  be dominant o r  zero  depending on whether 

t h e  t r a n s i t i o n  i s  "allowed" o r  "forbidden" by symmetry i n  

t h e  usua l  d i p o l e  sense.  Assuming the  ma t r ix  element t o  

be cons tan t  i n  t h e  neighborhood of  kc 
--+ 

we f i n d  f o r  t he  

case  of  allowed t r a n s i t i o n s  t h a t  

const. 
.c,(E) = 7 [E-E9f2 

and f o r  forbidden t r a n s i t i o n s ,  



11 

I 

These r e s u l t s  neg lec t  the Coulomb i n t e r a c t i o n  between 

the  e l e c t r o n  i n  t h e  conduction band and t h e  hole  i n  t h e  

valence band. It i s  poss ib l e  t h a t  t h e  bound e l ec t ron -ho le  

p a i r  ( e x c i t o n )  can  be exc i ted  t o  g ive  l a r g e  abso rp t ion  

va lues  below t h e  band gap and, s imi la r  t o  t h e  abso rp t ion  

spectrum of  hydrogen,there is  a b s o r p t i o n  i n t o  t h e  

continuum which produces unbound e l e c t r o n s  and holes .  

There i s  a comprehensive review a r t i c l e  on exc i tons  by 

Knox , and aga in ,  only t h e  r e s u l t s  a r e  summarized here .  

A s  above we d i s t i n g u i s h  between t h e  c a s e s  o f  allowed and 

forb idden  t r a n s i t i o n s .  

abso rp t ion  c o e f f i c i e n t  is given by e i t h e r  

25 

One f i n d s  t h a t  f o r  €<E, t h e  

o r  

where 

de'' - 
and €&I = 2 %*e' i s  t h e  b inding  energy of  t h e  exc i ton .  

These r e s u l t s  agree wi th  the case  when e x c i t o n  e f f e c t s  a r e  

% *  
ignored f o r  E>>€, , but  have non-zero va lues  a t  

It should be noted t h a t  t h e s e  r e s u l t s  a r e  almost 

s o l e l y  dependant on the form assumed f o r  t h e  shape o f  t h e  

bands, bu t  near  the  extrema, p a r a b o l i c  bands a r e  a good 



12 

approximation. We have also neg lec t ed  t h e  e f f e c t s  o f  

degeneracy and more than one equ iva len t  band. It i s  

d i f f i c u l t  t o  t r e a t  t hese  cases ,  but  t h i s  may not  be a 

s e r i o u s  l i m i t a t i o n  s i n c e  h igher  order  e f f e c t s  such sp in -  

o r b i t  s p l i t t i n g  may remove some of t h e  degeneracy. 

_I 4. I n d i r e c t  T r a n s i t i o n s  

It 1s p o s s i b l e  t h a t  the extrema i n  t he  conduction 
-b 

and valence bands do not  occur a t  t h e  same p o i n t  i n  k - 
space. From t h e  cons ide ra t ions  above one would not  expect  

t o  observe abso rp t ion  a t  energ ies  below t h e  minimum 

v e r t i c a l  energy s e p a r a t i o n  o f  t h e  bands because o f  t he  

conserva t ion  o f  momentum. It i s  p o s s i b l e ,  however, that  

the  l a t t i c e  can g ive  up o r  absorb t h e  momentum requ i r ed  

t o  make an i n d i r e c t  t r a n s i t i o n .  Phonons o r  c r y s t a l  d e f e c t s  

may be sources  o r  s i n k s  f o r  t he  momentum. These sources  

w i l l  provide only a s m a l l  amount of  energy f o r  t he  

t r a n s i t i o n ,  and t h e  photon w i l l  s t i l l  have t o  provide 

most  o f  t h i s  energy. 

The theory  f o r  i n d i r e c t  t r a n s i t i o n s  i s  developed i n  

a manner s i m i l a r  t o  t h a t  f o r  d i r e c t  t r a n s i t i o n s  except 

t h a t  t he  i n t e r a c t i o n  of t h e  e l e c t r o n  and ho le  w i t h  t h e  

l a t t i c e  i s  taken  i n t o  account. The d e t a i l s  o f  t he  

c a l c u l a t i o n  become involved r a p i d l y  and a r e  r e a d i l y  

, s o  only t h e  r e s u l t s  a r e  23,24 a v a i l a b l e  elsewhere 

p re sen ted  here .  



Assuming t h a t  t h e k n d s  i n  t h e  neighborhood of t he  

extrema a r e  pa rabo l i c ,  and neglec t ing  the  e f f e c t s  of 

exci tons ,  one f i n d s  t h a t  

where 6 i s  Boltzmanls cons tan t ,  

a t u r e  a s soc ia t ed  wi th  a phonon i n  branch i of t h e  phonon 

spectrum, and E; 
i n  F ig .  2 ( b ) .  The f i r s t  term under the  summation c o r r e -  

e'Lz3 i s  the  temper- 

i s  t h e  i n d i r e c t  band gap energy as shown 

sponds t o  the  absorp t ion  of a photon and the  emission o f  

a phonon, while the  second term i s  a s soc ia t ed  wi th  the  

absorp t ion  of a phonon and a photon. Each term w i l l  con- 

t r i b u t e  t o  t h e  absorp t ion  c o e f f i c i e n t  only when the 

squared q u a n t i t y  i s  p o s i t i v e .  The exponent ia l  f a c t o r s  

g ive  t h e  number of phonons which can be absorbed o r  

emi t ted  by the  l a t t i c e  a t  the temperature T . A s  above 

it  i s  necessary  t o  d i f f e r e n t i a t e  between allowed and 

forbidden t r a n s i t i o n s .  Equation (2-10)  i s  changed by 

summing over the  forbidden branches of t he  phonon 

spectrum and allowing the  absorp t ion  t o  r i s e  as  (A€) . 
The temperature dependance i n  the  t w o  cases  w i l l  be t h e  

same. 

3 
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The problem r a p i d l y  inc reases  i n  complexity when t h e  

e f f e c t s  of exc i tons  a r e  included. For photon energ ies  

nea r  the  band gap, t h e  absorpt ion spectrum can g e n e r a l l y  

be descr ibed  by the  r e l a t i o n  

(2-11) 

where the f u n c t i o n a l  f o r m  o f  Fi[E] depends on whether 

t h e  t r a n s i t i o n s  a r e  allowed o r  forbidden.  There a r e  a 

s e r i e s  of c o n t r i b u t i o n s  beginning a t  the  onset  o f  

t r a n s i t i o n s  i n t o  the  lowest exc i ton  s t a t e  and r i s i n g  u n t i l  

t h e r e  a r e  t r a n s i t i o n s  producing unbound e l ec t ron -ho le  

p a i r s .  For allowed t r a n s i t i o n s ,  the  absorp t ion  coef -  

f i c i e n t  r i s e s  i n i t i a l l y  as the 3,a power, and then r i s i n g  

as t h e  3/% power, even tua l ly  going t o  a squared dependance. 

For forbidden t r a n s i t i o n s ,  the s e r i e s  3/z , </2 , 3 should 
be observed. This  equat ion  descr ibes  the  c r e a t i o n  o f  an 

" i n d i r e c t "  exc i ton  f r o m  a h o l e  nea r  k, ( t h e  valence band 

wave v e c t o r )  and an e l e c t r o n  near k, ( t h e  conduction 

--+ 

3 

band wave v e c t o r ) .  This  i s  opposed t o  the  " d i r e c t "  

e x c i t o n  whose e l e c t r o n  and hole wave vec to r s  a r e  n e a r l y  

t h e  same. The t w o  terms under t h e  summation correspond 

t o  t h e  c r e a t i o n  of an exc i ton  and a phonon, and the  

c r e a t i o n  of an exc i ton  and a n n i h i l a t i o n  of a phonon by 



photons respectively. This is similar to the case of 

indirect band to band transitions that create unbound 

electrons and holes. 

To summarize, the simple theory predicts that near 

the onset of transitions, the absorption will rise as a 

function of the photon energy minus a constant to some 

power. For direct transitions, the theory predicts there 

will be a smooth rise in the absorption proportional to 

(Ad' or (A€) depending on the symmetry. 

transitions, there will be several components which will 

give, not a smooth curve, but one with "knees" or "bumps" 

in it corresponding to the onset of phonon emission or 

absorption. A careful analysis of the absorption edge 

spectrum should indicate whether the band gap is direct 

or indirect, and give the value of the exciton binding 

energy and the value of the band @p. The methods used 

t o  analyze the experimental data to get this information 

will be presented in Chapter IV. 

3c For indirect 



CHAPTER I11 

EXPERIMENTAL TECHNIQUES 

1. Determination of the Absorption Coefficient - -- 
Measurement o f  the intensity of light entering and 

leaving a sample of thickness d may be used to measure 

the abs orp t ion c oe f f ic Tent 

energy are proportional to 

the absorption coefficient 

since both the intensity and 

{z? . Phenomenologically, 

is defined by the relation 

where 1, is the intensity transmitted by the sample 

and 1; 
Some of the light entering the sample is reflected and 

must be taken into account in any real measurement. Let 

Io be the true incident intensity and f? the ratio of 

the intensity reflected from the air-sample interface, 

then 

is the intensity just inside the first surface. 

is the correct expression for the transmittance of a sample 

in air neglecting any interference effects. 

The absorption coefficient may be determined from 

values o f  R and the transmittance. The reflectance R , 
however, is difficult to measure at normal incidence. 

16 



To a very good approximation, the  r e f l e c t a n c e  need not  be 

known i f  the t ransmit tances  of two samples of th ickness  

4 f  d, a r e  measured. The r a t i o  of  t he  t ransmi t tances  

TL and i s  

The q u a n t i t y  i n  bracke ts  w i l l  be n e a r l y  u n i t y  when Re a 

Therefore Eq. (3-2) may be used t o  measure o( . This  

technique has been used c o n s i s t e n t l y  t o  measure t h e  

abs o r p t  i on c oe f f i c  l e n t .  

The apparatus  used t o  measure the  t ransmi t tances  i s  

shown schematical ly  i n  Fig. 3. The tungs ten  f i lament  

source ( S )  w a s  water co l led  and operated from a b a t t e r y  

( B )  t o  give t h e  needed s t a b i l i t y .  

focused the  f i lament  on the en t rance  s l i t  ( E )  of a Leiss  

double pr ism monochromator equipped w i t h  f l i n t  g l a s s  

prisms t o  give high d i spe r s ion  i n  the  v i s i b l e  p o r t i o n  of 

t he  spectrum. The monochromatic l i g h t  f r o m  the  e x i t  

s l i t  ( E l )  w a s  refocused i n  t h e  c r y o s t a t  ( C )  by the  mir rors  

M and M4. E i t h e r  of t h e  two samples S and S may be 

r o t a t e d  i n t o  t h e  beam. The i n t e n s i t y  of t h e  t r ansmi t t ed  

l i g h t  was de tec t ed  by a n  EM1 9558Q.A lo-s tage  photomulti-  

p l i e r  tube ( P )  which has an S-20 s p e c t r a l  response f o r  

low dark  cu r ren t  and high quantum e f f i c i e n c y  near  7OOOA.  

Mirrors M1 and M2 

3 1 2 

0 

The h igh  vol tage  f o r  t he  photo tube w a s  provided by a 



18 

n 1 MONOCHROMATOR 

1 I 

C- 

Fig. 3. Schematic diagran of experimental apparatus 



Fluke 403M d-c supply ( V ) ,  and t h e  c u r r e n t  was measured 

by a Kei thley 414 m i c r o - m i c r o m e t e r  ( A ) .  The output of 

t he  ammeter w a s  f ed  i n t o  a MiMeapOliS Honeywell (Brown) 

recorder  ( R )  equipped w i t h  an opera t ion  pen which w a s  

coupled t o  the  wavelength d r ive  ( W )  s o  t h a t  photo-current 

and wavelength could be recorded simultaneously.  The 

sample temperature was measured by a thermocouple 

( A u t  2.1%C0-Ag: 0.375Au) ( T ) .  

The monochromator was c a l i b r a t e d  aga ins t  t he  

opera t ion  pen markers using s p e c t r a l  l i n e  sources.  Ths 

c a l i b r a t i o n  is accura te  t o  + 0.001 eV and t h e  instrument 

was capable of reso lv ing  -0.0005 eV i n  t h e  reg ion  of 

i n t e r e s t .  The i n t e n s i t y  of  t h e  lamp was constant  a t  a l l  

wavelengths a f t e r  a 15 minute warm-up time and only 

f r e s h l y  charged b a t t e r i e s  were used f o r  each s e t  of 

measurements. The photocurrent was recorded cont inuously 

as  a func t ion  o f  t h e  wavelength f o r  b o t h  samples, one 

a f t e r  the  o ther ,  always scanning i n  the  same d i r e c t i o n  

t o  minimize t h e  e f f e c t s  of backlash i n  the  monochromator. 

No d i f f e r e n c e  i n  t h e  r e s u l t s  was observed when the  order  

of t he  measurement was reversed. The c r y o s t a t  cons i s t ed  

of a l i q u i d  a i r  r e s e r v o i r  which w a s  i s o l a t e d  from t h e  

samples. Cooling t o  any temperature between l i q u i d  

helium temperature and room temperature was achieved by 

c i r c u l a t i n g  t h e  l i q u i d  from t h e  r e s e r v o i r  around t h e  sample 

- 
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holder. An outer liquid nitrogen shield kept radiation 

losses small, and the sample was surrounded by a second 

shield which was kept at the same temperature as the 

sample. The thermocouple used to measure the sample 

temperature was mounted on the sample holder since the 

thin samples would not support a thermocouple junction. 

No difference in temperature could be detected between 

the sample holder and a thick sample itself at BOOK. 

The temperature measurements are believed to be accurate 

and constant throughout the time of measurement to - +3’K 

at all temperatures. A l l  samples were maintained at the 

desired temperature for more than 30 minutes before 

measuring to be certain that thermal equilibrium had 

been reached. 

The absorption coefficient was determined from the 

re 1 at i on 

where i, and i, are the photocurrents corresponding to 

the two transmittances. The thicknesses di and 4 were 

measured using micrometer calipers which gave an uncer- 

tainty in the thickness of - +3p , but the observed deviations 
were considerably less. Thin films were checked using the 

Fizeau interferometric method26 and - +1p accuracy was 

demonstrated. The estimated error in the absorption 

coefficient is about +l%, or - +0.03 cm’l at l o w  levels, 



I .  
The sample ho lde r  i n  the c r y o s t a t  was a massive 

I ’  p iece  o f  copper w i t h  recessed ho le s  i n  which t h e  samples 

could be h e l d  w i t h  copper r e t a i n i n g  r i n g s .  It  was neces- 

s a r y  t o  use t h in  Kel-F27 r i n g s  on e i t h e r  s i d e  of t h e  

sample t o  prevent  breaking t h e  samples a t  l o w  temperatures .  

- 2. Sample P repa ra t ion  

Two techniques were used t o  p repa re  samples f o r  

abso rp t ion  measurements. F i r s t ,  amorphous samples were 

made by r ap id  coo l ing  from t h e  molten s t a t e ,  and second, 

vacuum evapora t ion  was used. T o  i n s u r e  t h a t  t h e  samples 

were amorphous, Laue d i f f r a c t i o n  p a t t e r n s  were observed 

which showed no apparent  order.  The selenium used i n  

t h i s  s tudy  was purchased from t h e  American Smelting and 

Ref in ing  Company. The p u r i t y  was be l ieved  t o  be g r e a t e r  

t han  99.999% w i t h  l e s s  than 1 ppm. o f :  T e ,  Cu, A s ,  S i ,  S ,  

and o the r  halogens.  Fur ther  p u r i f i c a t i o n  was n o t  attempted. 

No s p e c i a l  techniques a r e  r equ i r ed  t o  handle  molten 

selenium because of t h e  l o w  mel t ing  p o i n t  ( 2 l 7 O C ) .  Samples 

without  bubbles o r  other  d e f e c t s  were prepared  by mel t ing  

t h e  selenium i n  an evacuated, s ea l ed  pyrex  tube 1 cm i n  

diameter .  The melt  was maintained a t  360°C f o r  s e v e r a l  

hours  and cooled by immersion i n  20°C water .  The time 

r equ i r ed  t o  coo l  the selenium was l e s s  than 5 seconds. 

A f t e r  removing t h e  g l a s s  tub ing ,  t h e  selenium was c u t  w i t h  

a diamond saw i n t o  2 mm t h i c k  p i e c e s  which were mechan- 
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i c a l l y  po l i shed  us ing  aluminum oxide g r i t  w i t h  soapy water  

as t h e  l u b r i c a n t .  The minimum sample th i ckness  which could 

be obtained i n  t h i s  manner was about 0.5 mm. The samples 

were examined a t  l i q u i d  n i t r o g e n  temperature f o r  hidden 

d e f e c t s  u s ing  a low power microscope. 

Considerably t h i n n e r  samples could be prepared by 

Yacuwn evaporat ion.  There was severe  damage t o  t he  f i l m s  

evaporated on qua r t z  o r  pyrex s u b s t r a t e s  when cooled below 

0"': because o f  mismatched thermal expansion c o e f f i c i e n t s  . 
The f i l m s  would adhere t o  e i t h e r  sodium c h l o r i d e  o r  Kel-F 27 

s u b s t r a t e s  a t  a l l  temperatures because t h e i r  thermal 

expansion c o e f f i c i e n t s  more c l o s e l y  match t h a t  of  se len ium 

In order  t o  remove a l l  s t r e s s  on t h e  f i l m  caused by t h e  

s u b s t r a t e ,  selenium w a s  evaporated onto aluminum coated 

Mylar subs t r a t e s28  which were 0.001 in .  t h i c k .  

n e c e s s i t y  of unsupported f i l m s  i s  demonstrated i n  t h e  

fo l lowing  chapter .  

The 

The Mylar could be peeled away from t h e  selenium 

l e a v i n g  an unsupported f i l m .  A l l  evaporat ions were done 

a t  a p r e s s u r e  o f  - t o r r  keeping t h e  c r u c i b l e  a t  

360 + s°C and t h e  s u b s t r a t e  a t  52 + 2 O C .  

were l o c a t e d  approximately 5 inches from t h e  c r u c i b l e  

which gave an evapora t ion  r a t e  of about 2.51 p e r  minute. 

The s u b s t r a t e  ho lder  was designed t o  permit  t w o  f i l m s  o f  

The s u b s t r a t e s  - - 

d i f f e r e n t  th icknesses  t o  be evaporated under i d e n t i c a l  
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condi t ions .  To in su re  t h a t  the temperature would be 

uniform across  t h e  t h i n  s u b s t r a t e ,  i t  was necessary  t o  

mount t h e  mylar shee t s  on more massive p i eces  of  g l a s s  

using Corning vacuum grease  a s  t he  binding agent .  The 

completed f i l m s  were removed f r o m  t h e  vacuum chamber 

immediately a f t e r  evaporation, t he  mylar was s l i d  o f f  

the  g l a s s ,  and peeled away from t h e  selenium f i l m .  This  

process  and mounting t h e  f i l m  i n  t h e  c r y o s t a t  t o o k  no 

more than  t e n  minutes. The procedure prevented c u r l i n g  

of the  f i l m s  and kept contaminants f r o m  the  a i r  a t  a 

minimum. Unsupported f i l m s  as t h i n  a s  101" could be 

produced i n  t h i s  way. 



CHAPTER I V  

RESULTS 

1. General Observations - 
The abso rp t ion  edge of  amorphous selenium has been 

s tud ied  by many workers. 

been done a t  room temperature.  Previous r e s u l t s  

and the  va lues  found i n  t h i s  s tudy  have been summarized 

i n  F ig .  4. 
about 15 yea r s ,  and many d i f f e r e n t  sources  o f  selenium, 

methods o f  sample p repa ra t ion ,  and techniques of  measure- 

ment a r e  repreBented. In s p i t e  o f  t h e s e  d i f f e r e n c e s ,  t he  

agreement i s  remarkably good. The purpose o f  t h e  p r e s e n t  

s tudy  w a s  n o t  s imply t o  add t o  the  fund o f  d a t a  shown i n  

A l a r g e  amount o f  t h i s  work has  
11-12,29-33 

The c o l l e c t i o n  o f  d a t a  covers  a t ime span of  

Fig.  4, but  t o  examine t h e  l o w e r  p o r t i o n  of t h e  curve more 

c l o s e l y  i n  an e f f o r t  t o  determine t h e  f u n c t i o n a l  depend- 

ance of  t h e  abso rp t ion  on energy and temperature and t o  

g e t  some i n s i g h t  i n t o  t h e  abso rp t ion  process .  

One f e a t u r e  o f  t h e  absorp t ion  spectrum which i s  

immediately apparent  i s  t h a t  d. appears  t o  vary  

exponen t i a l ly  w i t h  photon energy over many orders  of 

magnitude. The d i scuss ion  i n  Chapter I1 would l e a d  one 

t o  expect such a dependance i f  t h e  simple band model 

and d e n s i t y  of  s t a t e s  were a p p l i c a b l e  i n  t h i s  case .  

Since t h e  equat ions  given above a r e  v a l i d  only  f o r  

24 
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photon ene rg ie s  nea r  t h e  band gap, a c l o s e  examination of 

t h e  low energy t a i l  of t h e  spectrum a t  many temperatures  

i s  necessary  t o  r e v e a l  t h e  s t r u c t u r e  p r e d i c t e d  by t h e  

band model. 

The temperature dependance of t h e  abso rp t ion  edge 

H e  observed t h a t  a t  was measured by G i l l e ~ * ~  i n  1951. 

r e l a t i v e l y  low abso rp t ion  values ,  t h e  edge s h i f t e d  

towards h ighe r  ene rg ie s  wi th  decreas ing  temperatures .  

In  Fig.  5 of h i s  paper ,  he has p l o t t e d  t h e  logar i thm of a 

a g a i n s t  '/T f o r  e i g h t  wavelengths. 

spectrum G i l l e o  observed a t  t h r e e  d i f f e r e n t  temperatures  

has been r e p l o t t e d  from t h a t  d a t a  here  i n  F ig .  5 t o  show 

t h e  shape of  t h e  absorp t ion  spectrum more c l e a r l y .  The 

exponent ia l  behavior  appears t o  h o l d  even t o  t h e  lowest  

temperature he measured, but t h e  small  number o f  p o i n t s  

f o r  each curve makes a d e t a i l e d  a n a l y s i s  d i f f i c u l t .  The 

change o f  t he  s lope  w i t h  temperature i n  G i l l e o l s  d a t a  was 

noted by R. M. Blalmey34 and compared t o  Urbachfs  empir- 

i c a l  rule3' f i r s t  observed i n  t h e  absorp t ion  spectrum o f  

t h e  s i l v e r  h a l i d e s  i n  1953: 

The abso rp t ion  

where d o ,  6 and a r e  cons t an t s  c h a r a c t e r i s t i c  o f  

t h e  m a t e r i a l ,  and T i s  measured on the  abso lu te  s c a l e .  

Using G i l l e o f s  d a t a ,  Blakney found the  value of 6 t o  
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I '  
have a n e a r l y  cons t an t  va lue  o f  0.4, b u t  t h e  magnitude 

of t h e  s h i f t  was n o t  cons i s t an t  w i t h  Eq. (4-1). This  i s  

not  t oo  s u r p r i s i n g  s i n c e  t h e  r u l e  had p rev ious ly  been 

r epor t ed  only for c r y s t a l l i n e  m a t e r l a l s .  In  order  t o  

s tudy  t h e  apparent  c l o s e  connect ion between Urbachfs  

r u l e  and G i l l e o t s  d a t a ,  a more d e t a i l e d  s tudy  o f  t h e  

abso rp t ion  edge i n  th i s  reg ion  has  been made. The 

va lues  of t h e  abso rp t ion  c o e f f i c i e n t  measured i n  t h i s  

i n v e s t i g a t i o n  have been p l o t t e d  i n  Fig.  6 f o r  n e a r l y  

the  same t h r e e  temperatures  shown f o r  G i l l e o f s  d a t a  i n  

F ig .  5. The two s e t s  o f  d a t a  shown a r e  f o r  unsupported 

films and f i l m s  evaporated onto f r e s h l y  pol i shed  sodium 

c h l o r i d e  s u b s t r a t e s .  The r a t e  of  evapora t ion  and s u b s t r a t e  

temperature dur ing  evaporat ion were i d e n t i c a l  f o r  t h e  two 

s e t s  o f  f i l m s .  The apparent d i f f e r e n c e  i n  t h e  va lues  o f  

t he  abso rp t ion  c o e f f i c i e n t  f o r  t h e  supported and unsup- 

po r t ed  f i l m s  i s  due t o  the  e f f e c t  of  s u b s t r a t e s .  Since 

the  curves a t  room temperature agree f a i r l y  w e l l ,  i t  i s  

p o s s i b l e  t h a t  t he  d i f f e r e n c e  i n  the  c o e f f i c i e n t s  of 

expansion o f  t h e  t w o  m a t e r i a l s  i n to rduces  a l a r g e  amount 

of s t r a i n  i n t o  t h e  sample on t h e  s u b s t r a t e ,  e s p e c i a l l y  

a t  low temperatures .  The discrepancy between the  measured 

va lues  of o( f o r  t h i s  s tudy and G i l l e o ' s z 9  i s  even l a r g e r .  

The s lope  of t h e  exponent ia l  a t  room temperature i s  about 

t h e  same f o r  both cases, b u t  G i l l e o ' s  r e s u l t s  a r e  about 
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a f a c t o r  of 2 l a r g e r  than  the va lues  of Fig.  6.  Two 

d i f f e r e n t  techniques were used t o  measure t h e  f i l m  

th ickness  i n  t h e  two s t u d i e s  which could,  i n  p a r t  account 

f o r  t h e  d i f f e r e n c e .  Another l a r g e  d i f f e r e n c e  between 

these  r e s u l t s  i s  t h e  change i n  s lope  which G i l l e o  observed 

which was never  seen  t o  such a degree i n  the  p r e s e n t  study. 

The e l e c t r i c a l  p r o p e r t i e s  o f  evaporated selenium f i l m s  

have been shown t o  depend on t h e  temperature  of the 

s u b s t r a t e  du r ing  e ~ a p o r a t i o n ~ ~ .  

might also show such a dependance which would he lp  t o  

account f o r  some of t h e  d i sc repanc ie s  i n  the r e s u l t s  of  

t h e  two s t u d i e s .  Since G i l l e o  d i d  n o t  r e p o r t  the sub- 

s t r a t e  temperature used f o r  h i s  experiment, no th ing  

d e f i n i t e  may be s a i d  about t h i s  e i t h e r .  Whether G i l l e o t s  

"rock s a l t "  s u b s t r a t e s  were c leaved  o r  po l i shed  i s  l i k e -  

wise no t  known. The cleaved su r face  might have an e f f e c t  

on t h e  bonding and hence s t r a i n  introduced a t  low 

temperatures .  

The o p t i c a l  p r o p e r t i e s  

The s h i f t  of t h e  absorp t ion  c o e f f i c i e n t  w i t h  

temperature i s  o f t e n  d iscussed  i n  terms of  t he  l a t t i c e  

d i l a t i o n  e f f e c t  and the  l a t t i c e  broadening effect''. 

r e s u l t s  of t h i s  measurement f o r  t h e s e  t h r e e  d i f f e r e n t  

s e t s  of d a t a  a r e  shown i n  Fig.  7 where t h e  energy f o r  

which d =  2 3 . P ~ r n ~ '  

a t u r e .  The s lopes  of t h e  l i n e a r  p o r t i o n s  a r e  i n d i c a t e d  

The 

i s  p l o t t e d  a g a i n s t  absolu te  temper- 
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i n  t h e  f i g u r e .  The unsupported f i l m s  seem t o  show a 

l a r g e r  s h i f t ,  bu t  i n  genera l ,  t h e s e  r e s u l t s  a r e  i n  

reasonable  agreement, w i t h  values  n e a r  eV/OK. 

2 .  I n v e s t i g a t i o n  - of S t r u c t u r e  -- i n  t h e  Absorption Edge - 
Because of t he  l a r g e  e f f e c t  of t h e  s u b s t r a t e s  on t h e  

o p t i c a l  abso rp t ion  edge, only the  r e s u l t s  f o r  unsupported 

f i l m s  w i l l  be d i scussed  f u r t h e r  in  hopes t h a t  t h e  d a t a  are 

r e p r e s e n t a t i v e  of t h e  m a t e r i a l  i t s e l f .  The s l i g h t  

d e v i a t i o n s  from t h e  exponent ia l  edge seen  upon c l o s e  

i n s p e c t i o n  of  d a t a  f o r  unsupported f i l m s  i n  F i g  6 w i l l  

be the  s u b j e c t  of a l l  f u r t h e r  d i scuss ion .  

The abso rp t ion  edge of hexagonal selenium was 

i n v e s t i g a t e d  by Choyke and Patr ick37 us ing  a pho tovo l t a i c  

method from which only  t h e  r e l a t i v e  abso rp t ion  may be 

deduced. A more r e c e n t  measurement on s i n g l e  selenium 

c r y s t a l s  by Eckar t  and H e n r i ~ n ~ ~  used d i r e c t  o p t i c a l  

methods. Both s t u d i e s  found t h a t  t h e  onse t  of  absorp t ion  

w a s  c h a r a c t e r i s t i c  of  i n d i r e c t  band t o  band t r a n s i t i o n s .  

Because of t h e  c l o s e  r e l a t i o n s h i p  which e x i s t s  between 

hexagonal and amorphous selenium, t h e  r e s u l t s  of t h e  

former s tudy  a r e  presented h e r e  f o r  comparison. The 

square  r o o t  of t h e  r e l a t i v e  abso rp t ion  c o e f f i c i e n t  has  

been p l o t t e d  a g a i n s t  photon energy f o r  Chyoke and Pa t r i ckb  

data37 i n  Fig.  8 ( a ) .  

t h e  curves generated from t h e  express ion  

Both t h e i r  experimental  d a t a  and 
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a r e  shown. The values  o f  the i n d i r e c t  hand gap and t h e  

phonon energy they have deduced f r o m  t h e  experimental  

d a t a  a r e  shown i n  Fig.  8 ( b ) .  These r e s u l t s  a r e  i n d i c a t i v e  

of i n d i r e c t  band t o  band t r a n s i t i o n s  s i m i l a r  t o  t h e  e a r l y  

work on germanium and s i l i c o n  39940.  The s t r o n g l y  tem- 

p e r a t u r e  dependant phonon energy which they needed t o  f t  

t he  d a t a  i s  somewhat unusual, however. They have argued 

t h a t  s i n c e  t h e  c r y s t a l l i n e  form expands along t h e  c -ax i s  

and c o n t r a c t s  perpendicular  t o  t h e  c -ax is  on cool ing ,  

t he  unusual temperature dependance of t he  phonon energy 

i s  n o t  s u r p r i s i n g .  They experienced cons iderable  d i f -  

f i c u l t y  a t  lower temperature i n  f i t t i n g  the d a t a  as 

i nd ica t ed  by the  missing p o i n t s  below 200°K i n  F ig .  8 ( b )  

f o r  the phonon energy. Eckart  and Henrion measured the 

spectrum only a t  room temperature,  but found t h a t  &=O*obeV 

and f o r  l i g h t  po la r i zed  p a r a l l e l  and perpendicular  t o  the  

c -ax i s  E p t  2.76eV and Eg,=I.73eV r e s p e c t i v e l y .  

38 

I I 

I n  the  p re sen t  work, the low energy t a i l  o f  t he  

abso rp t ion  spectrum of  amorphous e l e n i u m  w a s  c l o s e l y  

analyzed t o  see  if t he re  was any s i m i l a r i t y  between i t  

and the  s p e c t r a  measured by o t h e r s  f o r  hexagonal selenium. 

F i r s t  a t tempts  were made t o  f i t  t h e  experimental  d a t a  t o  

an express ion  o f  t he  f o r m  
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where c; and E ;  a r e  parameters which a r e  dependant only 

on the  sample temperature.  A computer program descr ibed  

i n  the  Appendix was used t o  determine the  va lues  o f  c; 
and E; which would give the b e s t  f i t .  The phonon energy 

and t h e  i n d i r e c t  band gap energy were determined f r o m  t h e  

r e l a t i o n s  

(Ez-E,) 

and 

where E, > E, . The value o f  M i n  Eq. (2-10)  could be 

determined numerical ly  from c, , CZ and 8 . According 

t o  the  theory,  should be independant of  the  sample 

temperature ,  but a s t r o n g  temperature dependance was 

needed i n  t h e  term corresponding t o  phonon absorp t ion  i n  

order  t o  agree wi th  the  da ta .  Rather than  impose some 

a r b i t r a r y  temperature dependance on M i t  was found t h a t  

adding a cons tan t  term S ( a  t o  t h e  express ion  f o r  the  

number o f  phonons which could be absorbed a t  a temperature 

T allowed the  d a t a  t o  be f i t  i n  a convincing manner. The 

cons t an t  s<e) corresponds t o  a source of  momentum f o r  t he  

i n d i r e c t  t r a n s i t i o n s  which i s  independant of temperature.  

This  takes  i n t o  account the way i n  which d e f e c t s  can a c t  

a s  sources  of momentum i n  a p e r f e c t  c r y s t a l .  It i s  not  



36 

s u r p r i s i n g  t o  f i n d  such a term i n  amorphous selenium where 

the  "defec ts"  w i l l  be s o  p reva len t .  The proposed equation 

f o r  the  absorp t ion  c o e f f i c i e n t  when t h e r e  a r e  o t h e r  

sources  o f  momentum i n  add i t ion  t o  phonons i s  given by 

The experimental  d a t a  and the curve generated from t h i s  

express ion  a r e  shown i n  Fig.  9 

and shown i n  F ig .  1 0  were used t o  c a l c u l a t e  t h e  

where the  va lues  of  E' a 

s o l i d  curves wi th  s(8)=  0.0925 and M = 10  4 e V 2  cm-l, i n  

Eq. (4-3). 
The agreement between the shape o f  t he  experimental  

d a t a  and the  computed curves,  while n o t  p e r f e c t ,  i s  

s u r p r i s i n g l y  good. The temperature dependance o f  t h e  

i n d i r e c t  band gap and phonon energy show some s i m i l a r i t y  

t o  t h a t  seen i n  F ig .  8 ( b ) .  The phonon energy i s  l a r g e r  

than  t h a t  measured i n  t h e  same temperature range by 

Choyke and Patr ick37,  but  agrees wi th  the  r e s u l t s  of  

Eckar t  and H e n r i ~ n ~ ~ .  The i n f r a r e d  absorp t ion  spectrum 

of amorphous selenium shows maxima a t  0.0314 eV and 

0.0608 eV. The l a t t e r  showing a temperature s h i f t  41 
i d e n t i c a l  t o  t h a t  observed here .  

There i s  one f e a t u r e  of t he  curves shown i n  F i g  9 

which i s  p re sen t  a t  a l l  temperatures.  A t  t he  knee of  t h e  
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curves between t h e  two  nea r ly  l i n e a r  p o r t i o n s  a small ,  

sudden r i s e  i n  t h e  abso rp t ion& seen  which i s  s i m i l a r ,  

a l though l e s s  pronounced, t o  a f e a t u r e  i n  t h e  germanium 

spectrum that  has been i n t e r p r e t e d  as abso rp t ion  by 

exc i tons  . A n  exc i ton  l e v e l  has  been proposed f o r  

amorphous selenium which l i e s  0.08 eV below t h e  con- 

duc t ion  band . The d i scuss ion  i n  Chapter I1 showed 

1 

23 

t h a t  t he  behavior  of t h e  absorp t ion  c o e f f i c i e n t  becomes 

more complex when i n d i r e c t  exci tons a r e  included.  The 

problem of f i t t i n g  t h e  d a t a  i s  an ex tens ion  of t h e  case  

Cescri 'ueG above e ~ ~ e p ) i  iilui, we now need t o  f i t  t he  

express  i o n  

t o  t h e  experimental  d a t a .  The f i r s t  summation desc r ibes  

formation of i n d i r e c t  exci tons and the  second accounts 

f o r  band t o  band t r a n s i t i o n s .  The d a t a  shown p rev ious ly  

i n  Fig.  9 has been repea ted  i n  Fig.  11 where curves f o r  

on ly  fou r  temperatures  a r e  shown. The s o l i d  curve was 

c a l c u l a t e d  from Eq. (4-5) using t h e  value o f  c; and Ei 
which gave t h e  b e s t  f i t .  The two lowest  temperature curves 

were f i t  w i t h  f o u r  terms i n E q .  (4-5), t w o  of each power. 

The b e s t  f i t  f o r  t h e  t w o  h ighes t  temperature  curves  was 

obtained only when t h r e e  3 / 2  power terms and two squared 
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terms were used. The add i t ion  o f  t h i s  term may co r -  

respond t o  the formation of exc i tons  wi th  h ighe r  energy 

phonons, but  t h e  evidence f o r  t h i s  i s  t o o  s l i g h t  t o  

be ab le  t o  form any d e f i n i t e  conclusions.  The va lues  of 

E;, E,&) and ke were determined f r o m  the  f i t t e d  curves 

using the  r e l a t i o n s  

and 

The values  of t hese  

f i t  a r e  given i n  Table 

+ke-E,,  

q u a n t i t i e s  whlch gave the  b e s t  

I, and the  temperature dependance 

of t h e  i n d i r e c t  band gap i s  ind ica t ed  i n  Fig.  1 2 .  The 

value of should also be given by %(Ea-&) but i t  

was bel ieved t h a t  small  e r r o r s  i n  the measurements of the  

low values  o f  t h e  absorp t ion  c o e f f i c i e n t  rendered the  

values  c a l c u l a t e d  i n  t h i s  manner l e s s  accura te .  The 

f a c t  t h a t  t h e r e  was good agreement a t  room temperature 

was thought t o  i n d i c a t e  t h a t  t he  same energy phonon was 

r e spons ib l e  f o r  both the  i n d i r e c t  band t o  band t r a n s i t i o n s  

and the  formation i f  i n d i r e c t  exc i tons .  It i s  seen on 

i n s p e c t i o n  of Table 1 t h a t  the  value of E&)has an 

average value of 0.076 eV which i s  i n  good agreement 

wi th  the  value found by Hartke and Regensburger . This 

energy i s  probably independant of temperature over t h e  

23 
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range of these measurements. Another satisfying result 

is that the phonon energy has now been shown to have a 

nearly constant value of 0.023 eV which is a more 

reasonable energy than when exciton effects are omitted. 

The effect of errors in the low absorption measure- 

ments also seems to have shown up in the coefficients cci 

and (!,I. given in Table 2. Although there are some slight 

inconsistancies, the portion o f  the curve corresponding 

to indirect band to band transitions can be described by 

an expression of' the form of Eq. (4-3) letting $(e)= 0.305 

and = 1.08 x 10 cm-l. The remainder of the 

curve describing the creation of indirect excitons could 

not be described by such a simple extension of the theory 

4 

of Chapter 11. 

tendency to increase with increasing temperature, no 

strict functional dependance on temperature was observed. 

One possible reason for this is that the. coefficients 

calculated are very sensitive to small errors. These 

errors will probably not affect the functional dependance 

on photon energy, but will tend to obscure the exact 

temperature dependance of these coefficients. It is 

also possible that the mechanism for the formation of 

indirect excitons in an amorphous solid is not properly 

represented in the simple theory for crystalline solids. 

These details of  the lack of correspondance between 

the coefficients of the energy terms found in the exper- 

Although the coefficients have the proper 
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imental data and that proposed by the simple theory is 

not thought to be a serious limitation considering that 

the theory of indirect transitions has been developed for 

perfect crystals, not amorphous solids. Judging from 

the results shown in Fig .  11, it is the conclusion of this 

study that the tail of the absorption edge in amorphous 

selenium is caused by indirect transitions between the 

conductiontand and the valence band, and by the formation 

of indirect exdtons. The deviations between the cal- 

culated curve and the experimental data at low absorption 

values are probably due either to small errors in the 

measurement or to absorption by impurity or defect states 

that must exist because of the disorder. The continued 

rise in the measured absorption at the higher levels is 

undoubtedly due to othertransitions which may be direct, 

although the difficulty encountered in making and measuring 

thinner unsupported films prevented an investigation of 

this conjecture. 
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CHAPTER, V 

DISCUSS I ON 

Although o p t i c a l  absorp t ion  n e a r  the fundamental 

abso rp t ion  edge of semiconductors i s  capable  o f  p r e d i c t i n g  

the  shape and l o c a t i o n  of the h i g h e s t  valence band and t h e  

lowest  conduction band, i n  p r a c t i c e ,  such p r e d i c t i o n s  a r e  

d i f f i c u l t ,  The expe r imen ta l i s t  must keep a c a r e f u l  eye 

toward p rogres s  i n  t h e o r e t i c a l  c a l c u l a t i o n s  and r e s u l t s  

of o t h e r  experiments. In  t h i s  chap te r  a t e n t a t i v e  

ex tens ion  of an e x i s t i n g  band c a l c u l a t i o n  i s  made w i t h  

t h e  r e a l i z a t i o n  t h a t  t h e  d a t a  found above a r e  i n s u f -  

f i c i e n t  t o  make any d e f i n i t e  de t e rmina t ion  of t h e  bands. 

The proposed energy band model f o r  amorphous selenium i s  

be l ieved  t o  e x p l a i n  n o t  only t h e  o p t i c a l  p r o p e r t i e s ,  b u t  

many of the o t h e r  experimental  observa t ions  as we l l .  T o  

b e t t e r  understand the  reasons behind the proposed 

ex tens ion ,  a review of previous band c a l c u l a t i o n s  on 

both  selenium and r e l a t e d  m a t e r i a l s  i s  presented  t o g e t h e r  

w i t h  a d i s c u s s i o n  of some p e r t i n e n t  experiments on the 

e l e c t r i c a l  p r o p e r t i e s  of amorphous and hexagonal selenium. 

E a r l y  work on t h e  band s t r u c t u r e  i n  selenium i s  

reviewed by Olechna and Knox4* who have j u s t  completed 

a t i g h t  b ind ing  c a l c u l a t i o n  f o r  selenium chains .  

the major f e a t u r e  of the  s t r u c t u r e  o f  amorphous selenium 

Since  

47 



i s  the long  s p i r a l  cha ins ,  t h i s  c a l c u l a t i o n  has been 

chosen as the  s t a r t i n g  place f o r  modi f ica t ions  which w i l l  

a i d  i n  expla in ing  the  observed p r o p e r t i e s .  The i r  r e s u l t s ,  

which w i l l  be d iscussed  a t  g r e a t e r  l e n g t h  below, showed 

t h a t  along t h e  d i r e c t i o n  of the  chains  ( a - a x i s  i n  hexagonal 

se len ium) ,  The minimum band gap i s  d i r e c t  and l o c a t e d  i n  
3 

-space away f r o m  k = 0. Herman has done a "nea r ly  

empty l a t t i c e "  c a l c u l a t i o n  f o r  hexagonal selenium43 which 

shows a minimum i n  t h e  conduction band which would give 

r i s e  t o  i n d i r e c t  t r a n s i t i o n s ,  b& Knoxh f e e l s  t h a t  t he  

t i g h t  ( n e a r l y  c o v a l e n t )  binding along t h e  cha ins  would 

r u l e  out t h e  p o s s i b i l i t y  f o r  such a band shape. Hulin 45 
has done an L.C.A.O. c a l c u l a t i o n  f o r  t e l i u r i u m  whose 

s t r u c t u r e  and p r o p e r t i e s  are  s i m i l a r  t o  those  o f  selenium 

H i s  c a l c u l a t i o n  showed t h a t  t he  energy bands a r e  s i m i l a r  

t o  those  found by Olechna and Knox i n  the  same d i r e c t i o n  

i n  
--+ k -space, but  t h a t  t he  minimum s e p a r a t i o n  i n  t h e  bands 

occured a t  o the r  p o i n t s .  The behavior of both the  con- 

d u c t i o n  and t h e  valence bands was q u i t e  complex, and he 

was n o t  ab le  t o  s t a t e  exac t ly  where the  extrema occured. 

We can conclude t h a t  t h e o r e t i c a l  s t u d i e s  have shown t h a t  

a long  t h e  d i r e c t i o n  o f  the  chains  t h e  band gap i s  d i r e c t  

and t h a t  t h e r e  may be a maximum i n  the  valence band and 

a minimum i n  t h e  conduction band somewhere e l s e  ink-space .  
+ 
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For f u r t h e r  c lues  i n t o  the form o f  the bands, l e t  us  

review some of t h e  r e c e n t  experimental  work which has  been 

done on the p h o t o e l e c t r i c a l  p r o p e r t i e s  of bo th  hexagonal 

and amorphous selenium. 

edge and photoconduction edge f o r  both hexagonal and 

amorphous selenium. H e  found t h a t  t h e  abso rp t ion  edge 

and the photoconduction edges i n  the hexagonal mod i f i ca t ion  

n e a r l y  coincided,  bu t  t h a t  the onset  o f  photoconduct iv i ty  

i n  t h e  amorphous m a t e r i a l  was s h i f t e d  toward h ighe r  

ene rg ie s  by about 0.3 eV. 

attempted t o  e x p l a i n  the shif t  i n  amorphous selenium by 

proposing t h e  ex i s t ance  o f  an exc i ton  0.08 eV below t h e  

band gap of 2.53 e". They did n o t  d l scuss  the photo- 

conduct ion edge i n  hexagonal selenium. It would no t  be 

expected t o  f i n d  s t r o n g  exc i ton  abso rp t ion  i n  the  non- 

c r y s t a l l i n e  modi f ica t ion  i f  i t  d id  not  a l s o  e x i s t  i n  t h e  

c r y s t a l l i n e  form. 

e l e c t r o n  and ho le  t r app ing  l e v e l s  i n  macroscopic e l e c t r i -  

c a l  conduc t iv i ty  and charge t r a n s p o r t  measurements. 

Using a band model, t hese  l e v e l s  have been thought t o  

e x i s t  j u s t  above and j u s t  below t h e  conduct ion and 

valence band. 

G i l l e ~ * ~  measured the abso rp t ion  

Hartke and R e g e n s b ~ r g e r ~ ~  have 

Grunwald and others36 have observed 

Previous band models f o r  amorphous selenium have 

been concerned only w i t h  energy l e v e l s  without  any con- 

s i d e r a t i o n  f o r  t h e  p o i n t  symmetry of a p a r t i c u l a r  atom. 
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A band model wi th  such symmetry i s  proposed here .  

must be emphasized t h a t  the meaning o f  a band model i n  

t h i s  amorphous material has a d i f f e r e n t  meaning f r o m  that 

u s u a l l y  a s soc ia t ed  wi th  a p e r f e c t  c r y s t a l .  The space 

group symmetry used i s  i d e n t i c a l  t o  t h a t  of hexagonal 

selenium. The symmetry d i r e c t i o n s ,  however, a r e  

r e f e r r e d  t o  a few atoms i n  some small ,  l o c a l i z e d  r eg ion  

of space.  There i s  abso lu te ly  no c o r r e l a t i o n  between a 

d i r e c t i o n  i n  I< -space and a d i r e c t i o n  i n  t h e  amorphous 

sample. The ex i s t ence  of  s h o r t  range hexagonal 

s t r u c t u r e  In the amorphous f o r m  i s  used as the  b a s i s  

It 

-P 

f o r  proposing such a band model t o  desc r ibe  the  energy 

l e v e l s  f o r  a small  number of  atoms i n  the  amorphous 

network which makes up the  macroscopic sample. 

For t h i s  reason  i t  i s  necessary t o  d i s t i n g u i s h  

macroscopic from microscopic p r o p e r t i e s .  Opt ica l  

absorp t ion  i s  a microscopic p r o p e r t y  of  a s o l i d  s i n c e  i t  

i s  p r i m a r i l y  atomic i n  or ig in .  The atomic l e v e l s  of an 

atom a r e  inf luenced by t h e  presence of  t he  o the r  a toms 

i n  t h e  s o l i d ,  bu t  only one e l e c t r o n  i s  exc i t ed  by a 

s i n g l e  photon. Measurements of charge t r a n s p o r t  and 

o t h e r  e l e c t r i c a l  p r o p e r t i e s  a r e  macroscopic s ince  t h e  

motion of t he  e l e c t r o n  o r  hole i n  t h e  e n t i r e  s o l i d  i s  

examined. A band model i s  proposed below which shows 

the  s h o r t  range band scheme. The same model i s  used t o  



desc r ibe  the  macroscopic p r o p e r t i e s  only wi th  the  under- 

s tanding  t h a t  t h e s e  a r e  c o n t r o l l e d  p r i m a r i l y  by one 

d i r e c t i o n ,  namely the  cha in  d i r e c t i o n .  

A s  an a i d  t o  t h e  d i scuss ion  which fo l lows ,  a 

diagram of the  f i r s t  B r i l l o u i n  zone f o r  hexagonal selenium 

i s  shown i n  Fig.  13. The n o t a t i o n  f o r  l a b e l i n g  the  p o i n t s  

of  h igh  symmetry i s  t h e  same convent ion as used by Herman . 
We assume t h a t  t h e  band shape along t h e  r - A  d i r e c t i o n  i s  

t h e  aame as t h a t  c a l c u l a t e d  by Olechna and Knox4* as shown 

i n  t h e  reduced zone o f  Fig.  14. Because t h e  atoms a r e  

bound s o  t i g h t l y  along the  chains  and s o  weakly bound i n  

t h e  p lane  con ta in ing  r , M, and K, t he  bands i n  t h i s  

p lane  w i l l  tend t o  be q u i t e  narrow. 

f o r  hexagonal t e l l u r i u m  i n d i c a t e  t h a t  t h e  extrema i n  t h e  

43 

i i ~ l i n f s 4 ~  r e s u l t s  

bands occur probably  near  the p o i n t s  marked H and L. 

From the  cons ide ra t ions  d the binding,  we would expect 

t h a t  t he  bands i n  t h i s  d i r e c t i o n  would a l s o  be r e l a t i v e l y  

n a r r o  w44 . 
Let us p o s t u l a t e  t h a t  the t r a p p i n g  l e v e l s  observed 

i n  measurements o f  charge t r a n s p o r t  a r e  a c t u a l l y  l e v e l s  

i n  o t h e r  d i r e c t i o n s  i n  1< -space than  t h e  cha in  d i r e c t i o n s .  
4 

These l e v e l s  w i l l  then  be l o c a l i z e d  i n  small  regions of 

t h e  sample. Taking r e c e n t  d a t a  from G r ~ n w a l d t s ~ ~  measure- 

ments f o r  samples made under s i m i l a r  cond i t ions ,  we 

p o s t u l a t e  t h a t  a minimum i n  t h e  conduct ion band e x i s t s  

0.34 eV below t h e  minimum a t  A ,  and t h a t  a maximum i n  t h e  



Fig. 13. First Brillouin zone of hexagonal Se (after Herman, R e f . 4 3 )  
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Fig. 14. Hypothetical band model for amorphous Se 
(011 energies in ev) 
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valence band w i l l  be found 0.25 eV above t h e  level a t  A .  

These two ene rg ie s  correspond t o  t h e  t r app ing  l e v e l s  f o r  

e l e c t r o n s  and ho le s  r e spec t ive ly .  The locatdons o f  t he  

extrema were chosen s o  as  t o  agree i n  p r i n c i p l e  wi th  

Hulints4’ r e s u l t s  f o r  t e l lu r ium.  

were drawn f a i r l y  f l a t  w i t h  a f i r m  hand simply t o  com- 

p l e t e  t h e  p i c t u r e ,  s i n c e  the re  i s  no experimental  

evidence f o r  any l e v e l s  o ther  t han  those  mentioned. 

These r e s u l t s  combined wi th  the  va lue  of  t h e  i n d i r e c t  

band gap a t  room temperature o f  1 - 7 2  eV gives  t h e  d i r e c t  

gap a t  A a s  2.29 eV. This r e s u l t  i s  0.34 eV g r e a t e r  than  

the  r e s u l t s  o f  Olechna and Knoxfa c a l ~ u l a t i o n 4 ~ ,  and 0.24 

eV sma l l e r  than  the  value used by Hartke and Regensburger23. 

It should be remembered t h a t  t h i s  band model has been 

based on t h e  samples evaporated onto s u b s t r a t e s  he ld  a t  

5 3 O C .  

r e s u l t s  f o r  o t h e r  s u b s t r a t e  temperatures .  The former 

d i f f e r e n c e  i s  undoubtedly due t o  t h e  d i f f e r e n c e s  i n  t h e  

second neighbor d i s t a n c e s  f o r  t he  two f o r m s  of  selenium 

being considered,  and the  second d i f f e r e n c e  may be due 

t o  t h e  somewhat a r b i t r a r y  choice o f  t h e  ene rg ie s  of t h e  

The r e s t  of  t he  bands 

It would n o t  be s u r p r i s i n g  t o  f i n d  d i f f e r e n t  

extrema r e l a t i v e  t o  the  d i r e c t  gap a t  A .  It i s  appa ren t ly  

f o r t u n a t e  t h a t  t he  band extrema i n  Hu l in t s  c a l c u l a t i o n  45 
* 

were found i n  reg ions  o f  the  f i r s t  B r i l l o u i n  zone where k 
i s  l a r g e .  The very small  domains ( - 1 O A )  of hexagonal 

0 



order  would l i m i t  t h e  v a l i d i t y  of t h i s  model s e v e r l y  were 

it  n o t  f o r  t h e  l a r g e  k values o r  s h o r t  wavelengths asso-  
--* 

c i a t e d  w i t h  these energy l e v e l s .  Even the  s m a l l  s i z e  o f  

t he  domains w i l l  no t  be a l i m i t a t i o n  because of  coherence 

problems . 
This band model seems t o  i nco rpora t e  many experimen- 

t a l  observa t ions  f o r  t h e  f i r s t  time. F i r s t ,  and most 

important ,  i t  shows that  abso rp t ion  by i n d i r e c t  t r ans i -  

t i o n s  w i l l  c o n t r o l  the low energy r eg ion  of  t h e  

fundamental edge. Second, it shows t h a t  t h e s e  t r a n s i -  

t i o n s  w i l l  no t  produce e l e c t r o n s  o r  h o l e s  which w i l l  be 

f r ee  t o  conduct because o f  the small  coherence reg ion .  

T h i r d ,  i t  shows tha t  as t h e  amorphous selenium i s  t rans-  

formed i n t o  t h e  hexagonal f o r m ,  t h e  abso rp t ion  w i l l  

produce c a r r i e r s  that  w i l l  be able t o  move throughout 

the c r y s t a l .  F i n a l l y ,  th i s  model shows how t h e  

s t r u c t u r e  and amount o f  order  a f f e c t  the t r app ing  l e v e l s  

t o  a c e r t a i n  degree.  There remain many ques t ions  that  

cannot be f u l l y  explained un t i l  improvements have been 

made on t h e  r a t h e r  crude beginning f o r  t h i s  model, 

however. Some suggested i n v e s t i g a t i o n s  which w i l l  add 

t o  t h i s  model a r e  d iscussed  i n  t h e  fo l lowing  chapter .  



CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR RTTURF: WORK - - - 
The absorption-edge spectrum of amorphous selenium 

has been measured at several temperatures below room 

temperature. Previous results which led to speculation 

about Urbachrs rule were not observed. Structure seen 

in the spectrum was interpreted by the band theory in 

the manner used for other semiconductors. The results 

indicated that an indirect band gap and formation of 

indirect excitons were the cause of the onset of strong 

absorption. Results of other experiments and recent 

band calculations were used t o  draw a hypothetical energy 

band structure for the material. 

As in many experiments, a few findings raise an 

even larger number of questions and ideas for other 

experiments. The rather novel suggestion of a band 

structure with definite symmetry needs considerable 

work toward further confirmation. Good single crystals 

of hexagonal selenium have recently become available. 

This makes the more simple crystalline phase the obvious 

starting place for further studies of selenium. The 

indirect band gap has been observed in hexagonal selenium, 

but no mention of excitons has been made to this author's 

knowledge. That they appear in the amorphous modification 

and not in the crystalline form would be surprising 
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indeed. Perhaps neutron diffraction would provide some 

information about the phonon spectrum as an aid to 

locating the bazd extrema. 

Grunwaldts results have indicated a shift in the 

trapping levels for films evaporated at different substrate 

temperatures. The effect of substrate temperature on the 

indirect band gap should give some further idea about the 

connection between trapping levels and thetand extrema. 

The relation between the momentum source term and sub- 

strate temperature would a l s o  be interesting to observe 

since this term in the expression for the absorption 

coefficient is related to the amount of disorder in the 

sample. 

The difficulty in fitting the coefficient of the 

indirect exciton term to any theoretical expression 

warrants further investigation. Guch a study would 

undoubtedly require experimental apparatus with less 

possibility for error. It may be necessary to measure 

the reflectivity near normal incidence for a l l  temper- 

atures to be able to determine the low level absorption 

more accurately than in this experiment. The reflectivity 

spectrum at higher energies would a l s o  be helpful in 

locating positions of bands which do not contribute 

directly to the onset of  absorption. 

Cyclotron resonance, magneto-absorption and other 



measurements in magnetic fields should add greatly to our 

knowledge of the band structure of selenium. The 

necessity of orienting the symmetry axes of  the material 

with respect to the magnetic field innany experiments may 

require the use of good single crystals. 

Amorphous selenium exhibits many properties common 

to all glasses. In particular, above the glass transition 

temperature ( C. 3 O s 0 K ) ,  many parameters such as the 

volume coefficient of expansion change irregularly. This 

46 

transition is evidently caused by a change in the structure 

or order which might be studied by the optical properties 

when they are better understood. 



APPENDIX 

CURVE FITTING TECHNIQUES 

The l abor ious  t a s k  of  f i t t i n g  t h e o r e t i c a l  abso rp t ion  

curves t o  experimental  d a t a  has been eased somewhat by 

use of t h e  IBM 7074 computer, 

t h a t  used w h e n d t t i n g  the  curves by hand. 

t h e o r e t i c a l  equat ions allows them t o  be c a s t  i n t o  n e a r l y  

l i n e a r  equat ions by t a k i n g  the  appropr i a t e  r o o t .  

squares  technique y i e l d s  the s lope  and i n t e r c e p t  of t h e  

l i n e a r  equat ion  which b e s t  f i t  t h e  d a t a .  

The technique i s  e s s e n t i a l l y  

The f o r m  of t h e  

A l e a s t  

Let t he  express ion  t o  be f i t  be o f  t h e  f o r m  

The problem involved i n  using a l e a s t  squares  f i t  i s  t h a t  

each €4 i s  u s u a l l y  d i f f e r e n t ,  but  each term i s  zero  u n t i l  

E 3 E, , Therefore  f o r  €LE, t he  expres s ion  

tk = c, W E , )  

w i l l  be l i n e a r  i n  dw and 

next  h ighe r  term has y e t  t o  be 

Since t h e  o r i g i n  of t h e  

determined, only an 

unhown number of d a t a  po in t s  should be used. The 

program used a predetermined number of p o i n t s  u\ which 

would be used as a f i r s t  attempt a t  f i t t i n g  t h e  l i n e  

us ing  a s tandard  l e a s t  squares technique.  The f i t  was 

t hen  extended cnce as long as t h e  next  p o i n t  d i d  no t  

59 
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exceed some f r a c t i o n  F o f  the  mean d e v i a t i o n  f o r  t h e  

f i r s t  n p o i n t s .  
4 The va lues  of A ~ I =  ci(E-€l) were c a l c u l a t e d  f o r  

the e n t i r e  range of  t h e  d a t a ,  and a new s e t  of  experimen- 

t a l  p o i n t s  

were c a l c u l a t e d .  

l e a s t  squares  f i t  f o r  t he  next term was determined i n  

the same way u n t i l  a l l  of the curve  had been f i t .  

For dcXp g r e a t e r  t han  some d,,,;" t h e  

The accuracy of t he  f i t  w a s  c o n t r o l l e d  by the 

adjustment  of the parameters and F. The program 

could au tomat i ca l ly  a d j u s t  e i t h e r  one o r  both o f  t h e s e  

uni t1  an acceptab le  mean d e v i a t i o n  had been achieved, 

o r  t h e  ope ra to r  could a d j u s t  them from run  t o  run. For 

e a s e  i n  i n t e r p r e t a t i o n ,  t h e  Calcomp I1 p l o t t e r  was used 

t o  compare t h e  d a t a  and t h e  f i t t e d  curve g r a p h i c a l l y ,  

and numerical  comparison was provided by t h e  c a l c u l a t e d  

mean dev ia t ion .  
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selenium, the minimum band gap 
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0.34 should read  0.32 
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